Deep learning is a field with intense computational requirements, and your choice of GPU will fundamentally determine your deep learning experience. But what features are important if you want to buy a new GPU? GPU RAM, cores, tensor cores? How to make a cost-efficient choice? This blog post will delve into these questions, tackle common misconceptions, give you an intuitive understanding of how to think about GPUs, and will lend you advice, which will help you to make a choice that is right for you.

[Read more…] about Which GPU(s) to Get for Deep Learning: My Experience and Advice for Using GPUs in Deep Learning# Matrix Multiplication

## TPUs vs GPUs for Transformers (BERT)

On the computational side, there have been confusions about how TPUs and GPUs relate to BERT. BERT base was trained with 4 TPU pods (16 TPU chips) in 4 days and BERT large with 16 TPUs (64 TPU chips) in 4 days. Does this mean only Google can train a BERT model? Does this mean that GPUs are dead? There are two fundamental things to understand here: (1) A TPU is a matrix multiplication engine — it does matrix multiplication and matrix operations, but not much else. It is fast at computing matrix multiplication, but one has to understand that (2) the slowest thing in matrix multiplication is to get the elements from the main memory and load it into the processing unit. In other words, the most expensive part in matrix multiplication is memory loads. Note the computational load for BERT should be about 90% for matrix multiplication. From these facts, we can do a small technical analysis on this topic.